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Abstract. This work presents an information-theoretic approach to controlling

attention in video sequences. Our work balances the information gain from fol-

lowing an object of interest with the information potentially gained from shifting

the focus of interest, thus exploring the scene. We propose that the camera param-

eters of a single camera – pan, tilt and zoom – should be set to maximise expected

information gain to reduce the uncertainty in the scene model, which is equivalent

to minimising the expected conditional entropy. The scene model comprises mul-

tiple targets and a yet unobserved one, where the increase in information content

of the former is supplied directly by using a Kalman Filter tracker. The latter is

modelled using a ”background” Poisson process, and its parameters are learned

from extended scene observations; We deliberately model the scene activity with

a frequentist approach to emphasise the differences among the scheduling func-

tions presented. We support our argument with quantitative and qualitative anal-

yses in simulated environments, demonstrating that this approach yields sensible

exploration behaviours in which the camera alternates between obtaining close-

up views of the targets while paying attention to the background, especially to

areas of known high activity.

1 Introduction

Object detection and tracking of objects in video data are crucial elements for further

reasoning in modern vision-based systems. In the context of video surveillance, a high

coverage of supervised area is desired to maximise the number of object detections,

which are then used for further processing, e.g. identification or classification. These

tasks usually require or profit from a higher resolution [16] that usually cannot be ob-

tained from cameras that serve to overview the scene. Since the cost of installation and

resulting amount of video data to be transferred, stored and observed prohibits naı̈ve ad-

dition of cameras, an alternative solution is to use cameras with a pan/tilt/zoom (PTZ)

functionality, which explore the area in a sensible fashion and focus onto occurrences of

interest to surveillance. Not only are these devices readily available commercially, but

also does the restriction to a single camera obviate the need to relate several cameras to

each other spatially. Unfortunately, the exploration of the scene conflicts with a close-

up inspection of objects of interest. Zooming into a part of the scene decreases the field

of view of the camera, and areas with possibly interesting behaviour are not covered

any longer. Furthermore, in active zoom control a balance has to be struck between the
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maximum attainable zoom onto an object and the risk of losing lock.

These problems are directly addressed in our work, which presents a new method to

schedule a single active camera by making use of a probabilistic framework. We ad-

dress three issues, firstly how to explore the scene to search for new, yet undetected

actors, secondly how to decide which of the detected actors to observe more closely

and finally how far to zoom onto the chosen target, minimising the risk of losing track.

Specifically, we use the information–theoretic concept of entropy to measure the uncer-

tainty of each object in the scene and to compare the utility of pan/tilt/zoom settings

for decreasing these uncertainties. We use an activity map to incorporate scene specific

actor behaviour. This map keeps track of the rate actors appear in this area of the scene,

and is modelled by a Poisson process for each location. The probability of making a

new detection is obtained from the locations which are missed when a set of parameters

is chosen. This acts as a counterbalance for the zoom onto the actors. The best param-

eters are the ones which maximally reduce the uncertainty of a subset of or all actors

and minimise the chance of an undetected appearance of a new actor.

We compare our method with standard approaches using recent metrics and a new

one. The latter measures the increase in area of observations when using a given schedul-

ing algorithm. For repeatability, we test the scheduling policies on a common video

data set with available ground truth data, and on a new sequence which has been pre-

processed with a background detection algorithm. Both tests yield confirming results.

2 Related work

Camera scheduling has been addressed in some recent work by the vision commu-

nity. Qureshi et al.[17] used a first come, first serve rule in their simulator, based on

evaluations of network routing algorithms [5]. Contrary to our work, these use a su-

pervisor camera to make wide area observations and to coordinate PTZ control. This

kind of master–slave–configuration is also used by Bagdanov et al.[1], who considers

scheduling as a dynamic discrete optimisation problem. All works address the camera

assignment problem, i.e. more persons to be observed than cameras available, but not

the zoom selection. All authors use synthetic data to run evaluations for control of one

or several PTZ cameras.

Hampapur et al.. [11] uses hand crafted rules to assign active cameras to actors, and

chooses the zoom setting via geometric reasoning. The system uses multiple calibrated

supervisor cameras for 3D tracking, and incorporates a head detector to focus the

zoomed view onto the face of persons. A disadvantage of supervisor cameras is the

need for a mapping of image contents to the active camera, which has to be obtained

from restricted camera placements, movements or temporally extended observations

[18,17,8].

Probabilistic reasoning for camera zoom control is used by Tordoff et al.and Denzler

et al.[21,7] to minimise the chance of losing the target while maximising zoom level at

the same time. Whereas both works address only one target, the latter makes use of a

stereo platform to track in 3D.

We are aware that the concept of scene activity has been studied intensely [13,20,14,4].

We would like to stress that this paper is neither about a new tracking or scene activ-
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ity analysis method. Instead, our concern is how these results can be used for camera

scheduling. Davis et al.[6] use detected motion from randomly chosen pan/tilt settings

to learn a map which is then used to select future camera parameters. The authors pro-

pose several methods to navigate through the learned map, but all goal locations are

chosen randomly by assuming the map entries stem from an unnormalised probabil-

ity distribution. Another kind of activity map can be found in Gould et al.[9]. Here, a

sophisticated perceptual model is learned and used to drive the focus of attention. Ob-

jects are classified in a close-up view which is selected from a wide angle view having

a high chance of containing classifiable objects. The actual distribution is given by a

previously trained Bayes network.

Sequential camera scheduling in a decision theoretic framework has also been used

to generate a series of fixation points. Gu et al.[10] obtain these with a set of thresholds

to accommodate for the heuristic modelling of the costs and rewards obtained in from

directing the eye fixation point. Similar to our work, Paletta and Fritz’ [15], model these

gains with entropy as a measure of local information content and use reinforcement

learning to obtain a general policy which needs shorter sequences of fixations to reduce

uncertainty than selecting these points in a random fashion.

3 Active Zooming vs Exploration

One goal of our system is to track objects and obtain images at a high resolution to

aid in processing steps, e.g. identification or classification. For this, we desire minimal

uncertainty in the location of the objects. At the same time, the zoom is bounded by the

uncertainty of the object’s motion, as well as its spatial extent.

We make use of the same optimality criterion for the selection of the camera param-

eters as Denzler et al.[7]. However, while Denzler’s work is specifically concerned with

optimising tracking accuracy, we are seeking balance between this and the possibility

of acquiring new targets.

The criterion is as follows: Before making an observation at time t, we choose the

best parameter at for the observation. The parameter at summarises the different set-

tings for the observation process, i.e. pan, tilt and zoom. Among all choices, this param-

eter will maximally reduce the expected uncertainty in a given probability distribution

of the true state xt. Applying the chosen parameter yields an observation ot which is

finally used to update the distribution p(xt).
A natural measure for the uncertainty is the expected conditional entropy

Hat
(xt|ot) = −

∫∫
p(xt,ot|at) log(p(xt|ot,at)) dxtdot (1)

Note that this measure is independent of the next observation.

The best parameter a is then found by minimisation of the conditional entropy:

a∗
t = arg min

at

Hat
(xt|ot) (2)

In the following two sections we will first summarise the results of Denzler et al.,

then introduce our approach for scene exploration.
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3.1 Object Tracking

We assume independence of the objects in the scene, and assign each detection a Kalman

filter. Our observation model is the position and bounding box of the object in the 2-d

image plane. The state model for each of the tracked targets is the position, velocity and

extent in each coordinate. The motion model is a simple constant-velocity target for the

position and velocity [2], whereas the width and height are assumed to be constant.

The differential entropy of such a Gaussian distributed state vector x with covari-

ance matrix P is

H(x) = 3 +
1

2
log((2π)6|P|). (3)

We use the notation x̂+
t for a state which has been updated with the latest observa-

tion ot, and x̂−
t the state which has been predicted by the Kalman filter, but not updated

because no observation was made. The analogous notation is used for the covariance

matrices, P̂+
t and P̂−

t , respectively.

The conditional entropy in equation 1 integrates over the domain of all observations.

This domain can be split into the area inside (v) and outside (¬v) the image. The integral

then splits into a part where the target is visible, and a part where it is not visible:

Hat
(xt|ot) =

∫
v

p(ot|at)H(x̂+
t ) dot

+

∫
¬v

p(ot|at)H(x̂−
t ) dot (4)

Since in the Kalman filter case the entropies of the state estimate H(x̂+
t ), H(x̂−

t ) do

not depend on the actual observation o, this integral can be simplified to

Hat
(xt|ot) = w(at)H(x̂+

t )

+ (1 − w(at))H(x̂−
t ) (5)

The factor w(at) =
∫

v
p(ot|at) dot expresses the probability of making an observation

of the object in the image. We simplify the evaluation of this integral by making use of

the error function for the integral over the Gaussian distribution of the position and the

axis alignment of the observation. We weight this result by the expected observed area

of the bounding box.

The development of the entropy H and the probability of making an observation,

w, are shown in figure 1. Here, the first frame (a) shows the 1σ - covariance ellipse of

the location right after initialisation on a newly detected target. Due to the high initial

uncertainty of the location, the probability of making an observation is highest when

not zooming in. The fifth frame (b) shows the decreased covariance ellipse, and that the

confidence in the making an observation in the next frame rises. The camera zooms in,

but is limited by the visibility of the bounding box of the target. If the camera zoomed

in too far, the bounding box would be cropped. In the 16th frame (c), the camera zooms

in further and starts panning to follow the object.

The development of the entropy for a single target and its visibility is shown in

figure 2 for the first 20 frames after the detection of a target in the sequence.
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(a) Frame 442
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(b) Frame 447
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(c) Frame 458

Fig. 1. Visibility term w and entropy H for given levels of zoom for frames 442, 447

and 458 of the HERMES Outdoor sequence, camera 1. (a) after the initialisation of a

Kalman filter on a new object. (b) The covariance gets smaller, and the confidence in

the visibility rises. The camera zooms in. (c) The camera pans to follow the object.
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Fig. 2. Entropy H (left) and visibility term w (right) for consecutive frames in the HER-

MES sequence. The frames 442, 447 and 458, detailed in figure 1, have been high-

lighted.
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3.2 Poisson process for unobserved events

In many man-made environments, people show up regularly, but unpredictably. The ab-

solute times of two appearances of persons in a scene are independent random variables,

i.e. the number of appearances before an occurrence is independent of the number of

the following ones. The rate at which persons appear is dependent on the location in

the scene. People usually use doors or enter the scene along a typical pathway, and less

often take shortcuts.

In this discussion, for every point in the scene, the appearance of objects is modelled

by a homogeneous Poisson process. The waiting time T until the next appearance of an

object at location x thus has an exponential distribution with the appearance rate λ(x).
The probability of no appearance after having waited for time t is

p(T > t,x) = e−λ(x)t

The chance of an activity (one or more appearances) ht at location x since the last

observation t0(x) is thus

p(T < (t − t0(x)),x) = p(ht,x) = 1 − e−λ(x)(t−t0(x))

Assuming that all probabilities of appearance at locations x are independent, the

probability of making an observation in a given view Ft is:

p(ht|Ft) = 1 −
∏

x∈Ft

1 − p(ht,x)

= 1 −
∏

x∈Ft

e−λ(x)(t−t0(x))

= 1 − exp(−
∑
x∈Ft

λ(x)(t − t0(x)))

An object is detected by the system if it is in the field of view F of the camera. Once an

object is detected, the object is tracked by a Kalman filter. If the object leaves the scene

(out of the maximum field of view of the camera, or beyond a certain region of interest

in the scene), the Kalman filter is stopped and the object is not considered any more.

We seek to reduce the uncertainty in our scene model as much as possible at each

time step. As in the previous section, we take the entropy as a natural measure of un-

certainty. Under the assumption of independence of objects, this entropy reduces to the

sum of the entropy terms of all objects, which comprises of the set T of tracked objects

and one which has potentially appeared and remained undetected:

H =

|T |∑
k=1

Htracked(yk,t) + Huntracked(yk+1,t)

Whereas we denote the state of object k at time t as yk,t.

In this formulation, only one previously undetected object can appear. The entropy

of such an undetected object depends on the probability p(ht|F) of an appearance at
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time t in field of view F :

Huntracked(yk+1,t) = p(ht|F)Htracked(yk+1,t0)

+ (1 − p(ht|F))Hu

The entropy Htracked(yk+1,t0) is the entropy of the object after instantiation of a new

tracker, whereas Hu is a constant equal to the uncertainty in the state of the undetected

object. It can be interpreted as the entropy of a uniform distribution of the object being

in the now unsupervised areas or not having appeared yet - in practise, it is set to be the

logarithm of ten times the covariance of the uninitialised tracker.

Let pk,t = p(ht|Ft) the probability of an observation of an object k at time t and

correspondingly Htr,k,t = Htracked(yk,t|ok,t,Ft) be the entropy of a tracked object.

Disregarding missed detections, we assume that at the current time t the probability

pk+1,t of finding a new object k + 1 in the current field of view is 0, because we would

have found them in the previous observation otherwise. The relative entropy to the next

time-step is thus

Ht+1 − Ht =

|T |∑
k=1

(Htr,k,t+1 − Htr,k,t)

+ pk+1,t+1Htr,k+1,t0

+ (1 − pk+1,t+1)Hu − (1 − pk+1,t)Hu

=

|T |∑
k=1

(Htr,k,t+1 − Htr,k,t)

+ pk+1,t+1(Htr,k+1,t0 − Hu)

If all known targets are sufficiently well tracked, a view Ft is chosen which reduces

the entropy by tracking a new object, weighted by the chance of its appearance. This

view can exclude other, already tracked objects - the uncertainty in their position rises,

increasing their entropy Htr,k,t+1.

Figure 3 shows plots of the current zoom setting per frame and the horizontal dis-

tance of actors to the camera’s focus normalised to the current width of the visible

region. Any distance below 1 indicates a visible object. The figure shows the effect of

the Poisson process on the detection of the second actor in the HERMES sequences. If

appearance is not modelled, the camera simply follows the object by adjusting the pan

setting accordingly. In the latter case, the camera scans the area of the currently tracked

object while there is sufficient certainty about its next position. This local scanning

behaviour results in an earlier detection of the second object.

3.3 Multi- vs single target tracking

As outlined in the previous section, the requirement to optimally observe all targets

results in minimising the entropy of all targets at the same time. The behaviour will be

fairly predictable, mainly a concentration on the detected targets and limited exploration
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(a) Appearance not modelled

(b) One appearance per minute, 25fps

Fig. 3. Left: Horizontal distance of actors to the camera’s focus, right: zoom and pan

setting per frame. (b) shows the earlier detection of an actor due to the Poisson process.

of the scene. It might be more sensible to direct attention on a new target first, then move

to the old one to confirm its position, and thenceforth supervise both of them at the same

time.

To address the concept of novelty a new target introduces, or the importance of a

target which has not been under scrutiny for a longer period of time, the best action is

the minimum relative entropy to the next action selection step

a∗
t = arg min

at

∆H

Whereas ∆H = Ht(xt|ot,at)−Ht−1(xt−1|ot−1,at−1) is the entropy that is reduced

in one time step. Furthermore, the choice of the objects to be tracked is considered.

Instead of focusing onto a single target, any subset Ω of the currently tracked targets

might yield the best decrease of uncertainty

a∗
t = arg min

at,Ω

∑
Ω

∆H
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This gives us three different choices of policies. The minimum joint entropy of all

targets is simply the sum of all single entropies. The minimum relative entropy chooses

the target which yields the greatest overall gain in information. The third choice is the

extension of the latter to a subset of targets.

3.4 Modelling scene activity

To emphasise the differences from policies for scheduling we deliberately choose a sim-

ple approach to scene activity. More elaborate approaches could be used, e.g. Boiman

and Irani’s approach to saliency in video [4], or the visual attention proposed by Itti et

al.[12]. For our approach we use the number of detections in a given image area, since

in most scenes there are areas where less events of interest will occur, e.g. the appear-

ances and disappearances of pedestrians are limited by walls, or parts of a camera’s

view can be blocked. We learn these entry points from longtime observations by mod-

elling the appearance rate λ(x) for every scene point x. The appearance rate is trivially

obtained as the average over all detected appearances for each pixel. An example of

such an appearance map is shown for all CAVIAR sequences in figure 4. We then use

this map as input to the Poisson process described in section 3.2.

Fig. 4. Appearance in corridor and frontal view of the Caviar data set.

4 Evaluation

Evaluating scheduling algorithms on live video data is difficult. For a fair comparison,

each algorithm should run on the same input, which is difficult to obtain with human

actors. Pre-recorded video can be used for evaluation if the resolution is high enough to

support a “virtual zoom” approach, where the image is down-sampled and cropped to a

desired field of view. A high resolution is required if object detectors or trackers are to

be run on the down-sampled image.

The approach used in this paper is simulation based on ground-truth data. We use the

annotations supplied with the EC-funded CAVIAR test case scenarios 1 and add Gaus-

sian noise of 1 pixel to the labelled bounding boxes. This also removes other sources

of error in the evaluation, e.g. from detection, tracking and and data association. Each

1 EC Funded CAVIAR project/IST 2001 37540, found at URL:

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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detection is assigned a Kalman filter, which is used to obtain the uncertainty of the

tracking as described in section 3.1. The Kalman filter uses an observation noise of 1
pixel, and process noise of 0.05 units (both for 1σ). A track is lost if for more than 10

frames no observation has been made, the target leaves the maximum field of view, or

the expected measurement does not overlap with the actual measurement.

4.1 Metrics

The metrics we use are the latency, the fragmentation of a track, and the overall coverage

of all tracks compared to the ground truth.

The latency is a measure for the delay of the detection of a target in the scene, e.g.

when the camera is currently zoomed onto another target.

A track is a list of continuous observations, either from ground truth, or tracked by

the Kalman filter. The average spatial coverage of a track is the relative overlap of the

ground truth and observed bounding boxes, as introduced in [22]. This metric is less

than one if the camera is not constantly observing the object. For example, if an object

is seen only during half of the time it resides in the scene, its average spatial coverage

would be 0.5.

The fragmentation of tracks into several system tracks due to tracking loss is mea-

sured by the number of false positives (FP) and false negatives (FN) of the track asso-

ciation. A track is considered a false positive if the average spatial coverage is above

a threshold (here: 0.25), but the temporal overlap is too small (here: 0.16) . A track is

considered a false negative if it is overlapping either spatially or temporally below given

thresholds, and a true positive if it fulfils both criteria.

The overall coverage is the relative increase of object area due to zooming. This

metric measures the average observed area, relative to the ground truth value. Success-

fully observing the whole scene with a zoom setting of 2 would result in an overall

coverage of 2.

4.2 Experiments

We made two experiments, one with a constant appearance rate for every pixel, and one

where the appearance rate has been determined a priori from the data set (see figure

4). The experiments evaluated the performance of the entropy minimisation scheduling

for single, all and a subset of targets with a maximum number of 3 targets. If a further

target was within the bounding box spanned by the bounding number of targets in the

subset, it is added to the evaluation.

We finally compared the algorithms with standard rule based scheduling methods,

i.e. random selection of targets and the first come, first serve rule (FCFS) as used by

[17].

The first experiment assumes a minimum zoom setting which allows to observe the

whole scene. Such devices are called ’virtual zoom’ cameras, who simply downsample

or resize image regions from a sensor with a higher resolution. Another example for

such an input is high definition video, which can be processed much faster by restricting

analysis to the relevant parts of the image[3]. In this experiment, we set the maximum
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zoom to 3. The average activity of the scene pixels λ has been chosen as one appearance

every second, 5 seconds, every minute or 5 minutes, respectively.

As can be seen from figure 5(a), the entropy based scheduling methods result in

more tracks which are not assigned to any of the ground truth tracks, i.e. a higher frag-

mentation of tracks. The advantage of the methods presented is shown in figure 5(c),

the entropy based scheduling methods result in a better coverage of the targets. The

methods barely differ in the latency (5(b)).

λ Subset Sum Single

1/60 4.3 4.3 3.7

5/60 4.3 4.6 4.0

1 4.0 5.9 3.7

5 4.3 4.9 2.8

(a) False positives (FP)

in percent of the ground

truth tracks(324). FCFS:

3.4, random: 4.3

λ Subset Sum Single

1/60 4.9 4.8 4.8

5/60 5.0 4.9 4.8

1 5.1 4.9 4.9

5 5.0 5.0 4.8

(b) Latency in frames (at

25fps). FCFS latency: 4.9,

random: 5.1

λ Subset Sum Single

1/60 1.7 2.2 1.7

5/60 1.6 2.1 1.6

1 1.6 1.7 1.6

5 1.6 1.5 1.6

(c) Observation area

relative to ground truth.

FCFS: 1.1, Random: 1.4

The second experiment compared the different scheduling methods for a minimum

zoom value of 2 and a maximum of 4. The result is shown in figure 5. In addition to

the standard methods of scanning (‘scan’), random target selection (‘rnd’) and first–

come–first–serve (‘fcfs’), we added a background–only policy (‘bg’), which results

from searching for a new target only, without taking any tracking based utility into

account. This last method, as well as the methods described in section 3.3 – all (‘a’),

single(‘s’), subset (‘o’) – have been evaluated with and without local scene activity

(label augmented with ‘+p’ in the latter case). The poor performance of scanning,

background-only, random and FCFS is easily explained. We made two experiments,

one with a constant appearance rate for every pixel, and one where the appearance rate

has been determined a priori from the data set (see 4). The first two methods simply

scan the parameters in a more or less sensible fashion. They do not react to detected tar-

gets at all. FCFS profits from the tie-breaking rule of observing the oldest target next,

but both FCFS and the random rule fixate onto an object only for a fixed time, not con-

sidering the state of the objects already visited or the duration the rest of the scene has

been without observation. Apparent is the increase of the overall coverage when using

the learned appearance rates. The points of high activity are more often visited than the

less active areas of the scene.

5 Conclusion and Future Work

This paper presented a method of scene exploration combined with zoom control. We

extended the information theoretic framework pioneered by Denzler et al.[7]. Here, the

choice of zoom, pan and tilt settings is driven by the maximal expected decrease in

uncertainty augmented by the likelihood of making an observation. To control the ex-

ploration of the scene, we added the uncertainty of a potential, yet unobserved target
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Fig. 5. Box plot of area covered by different scheduling methods on CAVIAR data set.

Measured area is relative to unzoomed ground truth. See text for explanation of labels.

to this criterion. The chance of an appearance of a target is modelled by local Poisson

processes, the probability of making an observation thus rises with the time not having

observed this location. This acts as a counterbalance to the zoom-in behaviour, the tar-

get is being tracked while its surrounding area is maximally covered by observations.

The zoom onto the current target is disfavoured once the expected decrease in uncer-

tainty is higher for a new, potential target which has not yet been detected. We extended

this reasoning to multiple targets. Here, the potential acquisition of a new target must

provide more information than a subset of targets which can be observed simultane-

ously.

We evaluated the performance of this scheduling policy with respect to existing and

new metrics. These were in particular the analysis of latency of the target detection,

the increase of observed area, and the number of missed targets. The results on two

publicly available data sets show that the camera control works well for two different

camera systems: virtual zoom cameras and traditional pan-tilt units.

However, several shortcomings of the current method will be focus of our attention

in future work. The assumption of independence of the random processes governing

appearance at location x is not correct. This dependency can be approximated by find-

ing typical trajectories in a scene e.g. [13]. Furthermore, the simplifying assumption

that the targets are independent leads to difficulties when targets are overlapping. Our

future research aims to address this issue by including the dependency into the entropy

framework, thus reacting accordingly when the objects are getting closer.

Also the scene activity approach in section 3.4 lends itself to a temporal extension

– often appearance rates vary with time, for example, people flock before the box office

opens, appear at a restaurant at given times because they have common meal times, or

cars gridlock during rush hours. This requires not only a spatially, but also temporally

varying appearance rate, i.e. a non-homogeneous Poisson process. Reliably learning
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such behaviour requires scene observation over a longer period of time and will be

addressed in our future work.

Lastly, we do not incorporate any movement cost into the camera parameter se-

lection process. A change of zoom by one motor step is considered equally fast as a

pan and tilt across the whole field of view. This can lead to abrupt behaviour and sub-

optimal paths when the parameter selection process is myopic, i.e. a greedy, one step

look-ahead. We are therefore looking into methods to efficiently solve for multi-step

plans to select the camera parameters [19], or to use reinforcement learning in a dy-

namic context, extending the [15] into the temporal domain.
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